
Logistic Regression and Gradient Ascent

CS 349-02 (Machine Learning)

April 10, 2017

The perceptron algorithm has a couple of issues: (1) the predictions have no probabilistic

interpretation or confidence estimates, and (2) the learning algorithm has no principled way

of preventing overfitting.1

There is another model for learning a hyperplane called logistic regression. Here are the

main differences from our perceptron learner:

1. Since we care about the probability of a prediction, we define, for a data-point x, under

a given hyperplane, the probability of a label y:

P (y = 1|x; w, b) =
1

1 + e−(w.x+b)
(1)

For brevity, and to be consistent with textbooks, let’s denote both the w and b param-

eters by θ. For a d-dimensional w = [w1, w2, . . . wd], θ will represent [b, w1, w2, . . . wd].

We will use hθ(x) to refer to the quantity in Eq. 1, mainly because P (y = 1|x; θ) is

too long to write out.

Sidenote: the function

σ(z) =
1

1 + e−z

is called a sigmoid or logistic function. You can see by plotting it or plugging in values

for z that it always takes on a value between 0 and 1.

2. Instead of our class labels y taking on values of 1 or −1 as in the perceptron, we will

have them take on values 1 or 0. For example, in your PS2 task, you would assign

positive to 1 and negative to 0 if you were using logistic regression.

Just like the perceptron, it doesn’t matter which class we decide to label as 1 versus

0. It’s just that the 1/0 labeling scheme makes the math cleaner compared to a 1/− 1

1Averaging, etc. are heuristic approaches with no provable guarantees.

1

scheme, mainly because we’re thinking of the predictions as probabilities (which range

from 0 to 1).

3. Logistic regression gives us an explicit objective to aim towards, which can be achieved

with several different optimization algorithms. The perceptron learner is an algorithm,

and while it is implicitly trying to minimize the number of errors on the training data,

it is not a formal, explicit objective. Being able to frame an objective allows us to also

prevent overfitting, as we will see later.

Important note on names Logistic regression actually solves a classification task where

the labels are one of two classes, just like the other (perceptron, kNN) algorithms we’ve seen

so far – not a regression task where the labels are real numbers. It is a misnomer due to its

similarity and historical connection with linear regression.

1 Maximum Likelihood Principle and Likelihood

The Maximum Likelihood Estimation Principle, or MLE, is a general framework in proba-

bilistic machine learning.

The model we’re learning is the hyperplane, parametrized by w and b, which as noted in

the earlier section, we’ll refer to by the single value θ.

The likelihood of a given model θ for a dataset X,y (where X is a set of m data-points

and y is the corresponding set of labels) is defined as 2

L(θ) = P (y|X; θ)

MLE says that of all the hyperplanes θ that are possible, we should pick the one that has

the highest likelihood for this data. In order to do this, we should expand out the likelihood

definition above as 3

L(θ) = P (y|X; θ) =
m∏
i=1

P (y(i)|x(i); θ)

2The notation P (a|b; c) is the probability of a given (conditioned on) b under a model c.
3The notation

∏4
i=1 ai stands for the product of a1, a2, a3, and a3, just like

∑4
i=1 ai is notation of the

sum of a1, a2, a3, and a4.

2

because the probability of a dataset is the product of the probabilities of each point (i.e.,

the probability of all the points occurring).4

What is P (y|x; θ)? When y = 1, it is exactly given by Eq. 1, that is, hθ(x). When y = 0,

it is 1− hθ(x). The equation below captures this:

P (y|x; θ) = hθ(x)y · (1− hθ(x))1−y (2)

Ex. Explain why Eq. 2 gives the correct value of P (y|x; θ) for both possible values of y.

Plugging Eq. 2 back into the likelihood:

L(θ) =
m∏
i=1

P (y(i)|x(i); θ) =
m∏
i=1

hθ(x
(i))y

(i) · (1− hθ(x(i)))1−y(i)

Take the log of this expression, to avoid underflow when multiplying small numbers, and

because sums are easier to do calculus with than products. Since logL(θ) is a monotonic

function of L(θ), maximizing it is the same as maximizing L(θ) itself.

logL(θ) =
m∑
i=1

y(i) · log hθ(x
(i)) + (1− y(i)) · log(1− hθ(x(i))) (3)

Our training objective is to find the value of θ – that is, the hyperplane – for which the

log likelihood is maximized, compared to all other possible hyperplanes.

2 Optimization with Gradient Ascent

You already know that you can find the maximum of a function by computing its derivative,

setting it to 0, and solving. Unfortunately, that is impossible with Eq. 3 since it is the sum

of an arbitrary number of terms and has no closed form.

One trick is called gradient ascent (known as gradient descent when we are minimizing

rather than maximizing a function). Consider a convex function like the sketch below, where

θ is 1-dimensional. When you are at the certain value of θ, you can calculate f(θ) and the

derivative (slope) f ′ of the function at that point, but you can’t see the rest of the function.

4The notation y(i) refers to the label of the ith training point, and x(i) to the feature vector of that point.

Parentheses are used to clarify that i is an index, not an exponent.

3

Imagine walking up a mountain where all you know at any step is (1) your elevation and (2)

the slope of the ground.

Starting from point a in the sketch, how would you decide which direction to move in

order to reach the peak eventually? There are only two possible directions, right or left.

The best decision is to move in the direction of the slope at a, which is positive. Similarly,

starting from point b, you would move in the direction of the slope there, which is negative.

Furthermore, it makes sense to take a big step from a, where the magnitude of slope is

larger, since this tends to happen further away from the maximum, and a smaller step from

b because the magnitude of the slope there is a bit smaller.

Gradient ascent formalizes this intuition. It says that we update θ by the derivative

multiplied by η, a constant learning rate. η controls how big a step we make in the direction

given by the derivative. 5 If we start at θ = a at time t− 1:

θ(t) → θ(t−1) + ηf ′(θ)|θ=a

2.1 Gradient Ascent in Multiple Dimensions

The same principle and update rule applies to multi-dimensional functions. The only dif-

ference is how we compute the derivative. The gradient of a function f(θ) when θ is 2-

dimensional, for example, is given by a vector of partial derivatives at each dimension. We

use the gradient symbol ∇θf instead of f ′ when dealing with multiple dimensions.

A partial derivative is the derivative of a function along a single dimension, treating

the other dimensions as constants. So

∇θf(θ) =

[
∂f

∂θ1

,
∂f

∂θ2

]
This generalizes to more dimensions. For d-dimensional θ,

∇θf(θ) =

[
∂f

∂θ1

,
∂f

∂θ2

,
∂f

∂θ3

. . .
∂f

∂θd

]
5Notation: θ(t) denotes the value of θ at time-step t.

4

Given a function f(θ) = −θ2
1 + 5θ3

2,

∂f

∂θ1

= −2θ1 (treating θ2 as constant)

∂f

∂θ2

= 15θ2
2 (treating θ1 as constant)

Therefore,

∇θf(θ) = [−2θ1, 15θ2
2]

The gradient of f(θ) at the point [2, 1], for example, is [−2 · 2, 15 · 12] = [−4, 15].

Ex. Compute the gradient of f(θ) = log 2θ1 + θ1θ2 − θ4
2 + eθ3 at [2, 3, 0].

2.2 Gradient Ascent Applied to Logistic Regression

Eq. 3 gives us a function to maximize to find the optimal hyperplane θ. Using the gradient

ascent approach gives us this update rule at time step t:

θ(t) → θ(t−1) + η∇ logL(θ)|θ=θ(t−1) (4)

Let’s compute ∇ logL(θ):

∇θ logL(θ) = ∇θ

m∑
i=1

y(i) · log hθ(x
(i)) + (1− y(i)) · log(1− hθ(x(i))) (5)

=
m∑
i=1

y(i)

hθ(x)
∇θhθ(x

(i)) +
1− y(i)

1− hθ(x(i))
(−∇θhθ(x

(i))) (6)

Evaluating ∇θhθ(x) Recall that θ was our shorthand for the combination of w and b that

parameterize the hyperplane, so hθ(x) =
1

1 + e−(wx+b)
. Its derivative with respect to θ is

−1 · (1 + e−(wx+b))−2 · e−(wx+b) · −x

= x · 1

1 + e−(wx+b)
· e−(wx+b)

1 + e−(wx+b)

Conveniently,
e−(wx+b)

1 + e−(wx+b)
= 1− 1

1 + e−(wx+b)
, so the above quantity becomes

5

x · hθ(x) · (1− hθ(x))

We put this together with Eq. 6. (To reduce congestion, I removed the (i) notation to

denote the ith example. Read all mentions of x and y in the computation below as x(i) and

y(i) respectively.)

∇θ logL(θ) =
m∑
i=1

y

hθ(x)
x · hθ(x) · (1− hθ(x)) +

y − 1

1− hθ(x)
x · hθ(x) · (1− hθ(x))

=
m∑
i=1

y · x · (1− hθ(x)) + (y − 1) · x · hθ(x)

=
m∑
i=1

x · y · (1− hθ(x)) + (y − 1) · hθ(x)

=
m∑
i=1

x · (y − hθ(x)) (7)

In terms of the partial derivatives, for our d+ 1-dimensional hyperplane θ, this gradient

is the vector [
∂

∂θ0

logL(θ),
∂

∂θ1

logL(θ),
∂

∂θ2

logL(θ), . . .
∂

∂θd
logL(θ)

]
For j ≥ 1, where xj is the value of the point x in dimension j:

∂

∂θj
logL(θ) =

m∑
i=1

x
(i)
j · (y(i) − hθ(x(i)))

For j = 0, because x doesn’t have a value in that dimension,

∂

∂θ0

logL(θ) =
m∑
i=1

(y(i) − hθ(x(i)))

This gives us the gradient for our update (refer back to Eq. 4). Updating each dimension

j at a time:

θ
(t)
j → θ

(t−1)
j + η

m∑
i=1

x
(i)
j · (y(i) − hθ(t−1)(x(i))) for all j ≥ 1

θ
(t)
0 → θ

(t−1)
0 + η

m∑
i=1

y(i) − hθ(t−1)(x(i)) (8)

6

When implementing the algorithm, it is faster to treat [θ1, θ2, . . . θd] as a vector and and

do a single vector addition rather than write a for-loop over the different dimensions j. Going

back to our original w, b notation is better for this. The above equation is re-written as

w(t) → w(t−1) + η

m∑
i=1

x(i) · (y(i) − hθ(t−1)(x(i))) for all j ≥ 1

b(t) → b(t−1) + η

m∑
i=1

y(i) − hθ(t−1)(x(i)) (9)

2.2.1 Algorithm for Logistic Regression Gradient Ascent (batch version)

Just like with the perceptron, we start with all-zeros for w and b. The algorithm makes a

sweep through the data, computes the gradient, and updates the hyperplane. This repeats

for Maxiter epochs.

• w = all-zeros, b = 0

• for epoch in [1, 2, . . . Maxiter]:

• gradw = all zeros (to compute the first gradient in Eq. 9)

• gradb = 0 (to compute the second gradient in Eq. 9)

• for x(i), y(i) for i ∈ [1,m] in training data:

∗ gradw ← gradw +x(i) · (y(i) − hθ(x(i)))

∗ gradb ← gradb +(y(i) − hθ(x(i)))

• w ← w + η gradw

• b← b+ η gradb

When do we stop? We could see when our likelihood stops growing much. It’s usually

not a good idea to do this in practice. Instead, we’ll run it all the way until Maxiter. Unlike

the perceptron, there’s usually always room for update, since it’s not an all-or-nothing error

prediction.

7

2.3 Stochastic Gradient Ascent

The summation in the above equation is expensive, since we need to go through all the

training points just to make one update.

In contrast, the perceptron algorithm did “online” updates, where online refers to updat-

ing the model parameters after each training point, rather than the Eq. 9 strategy of going

through the entire “batch” of training examples for an update.

Stochastic gradient ascent (SGD) is an online updating variant of traditional (batch)

gradient ascent. The idea is to iterate through the labeled training data-points x(i), y(i) in

epochs just like the perceptron. On each iteration, we compute the gradient only at that

training point (rather than summing up over the dataset), and immediately update our

hyperplane.

This is a noisy approximation of the true gradient, but it leads to faster learning. Here’s

the modified algorithm:

• w = all-zeros, b = 0

• for epoch in [1, 2, . . . Maxiter]:

• for x(i), y(i) in training data:

∗ w ← w + x(i) · (y(i) − hθ(x(i)))

∗ b← b+ (y(i) − hθ(x(i)))

A midway compromise between the more accurate but expensive batch gradient ascent

and the faster but noisier SGD is to divide the data into “mini-batches”, accumulate the

gradient on each mini-batch, and update.

3 Regularization

The above learning procedures could cause w to become very large. This leads to overfitting,

because

hθ(x) =
1

1 + e−(w.x+b)

will end up being 0 or 1 most of the time, and we lose the agnosticism of the logistic

regression (an advantage over the perceptron).

8

The great thing about having an explicit objective function is that we can throw in

other preferences! So if I don’t want my something to become too large, I’ll simply ask the

objective to penalize its L2 norm.

This is called L2 (or ‘ridge’) regularization, and is achieved with a small tweak to Eq. 3.

Objective(θ) = logL(θ)− α

2
||θ||2

=
m∑
i=1

y(i) · log hθ(x
(i)) + (1− y(i)) · log(1− hθ(x(i)))− α

2

d∑
j=1

θ2
j

where α is a hyperparameter6 denoting the regularization weight, determining how much

to penalize large models at the expense of the log likelihood. Notice that I have approximated

||θ||2 as
∑d

j=1 θ
2
j rather than

∑d
j=0 θ

2
j . That is, we’re only regularizing the w coefficients, not

b, which is θ0, because in practice, b doesn’t grow that large and we prefer not to penalize it.

Computing the gradient of
α

2

∑d
j=1 θ

2
j :

α

2

[
∂

∂θ1

d∑
j=1

θ2
j ,

∂

∂θ2

d∑
j=1

θ2
j , . . .

∂

∂θd

d∑
j=1

θ2
j

]
=
α

2
[2θ1, 2θ2, . . . 2θd] = α[θ1, θ2, . . . θd] which is simply αw

The regularized function’s derivative is an adaptation of our original gradient to account

for this new term. The SGD update therefore becomes

w ← w + x(i) · (y(i) − hθ(x(i)))− αw

and batch gradient ascent update becomes

w ← w +
m∑
i=1

(
x(i) · (y(i) − hθ(x(i)))

)
− αw

The update for b remains the same as before because we decided not to penalize it.

There are other types of regularization, like L1 (or ‘lasso’) regularization, which leads to

sparse models (weight vectors with many zeros). However, the L1 norm is not differentiable

at 0, and requires some tricks to approximate the gradient with “subgradients”. We won’t

cover L1 regularization, but you should know its existence and understand why it’s used.

6Tune η and α on development data. Dang those hyperparameters!

9

